Program Verification
Using Separation Logic

Queen Mary University of London

Lecture 1

Goal of the course

Study Separation Logic having
automatic verification in mind

Learn how some notions of
mathematical logic can be very helpful
In reasoning about real world programs

vold t1394Diag_CancelIrp(PDEVICE_OBJECT DeviceObject, PIRP Irp)

{
KIRQL Irql, Cance

BUS RESETIRP - #BuskesetIrp, *teny; A piece of a windows

PDEVICE_EXTENSION device

deviceExtension = DeviceObject->DeviceExtension; d ev i Ce d r i V e r
[J

KeAcquireSpinLock(&deviceExtension->ResetSpinLock, &Irql);

temp = (PBUS_RESET_IRP)deviceExtension;
BusResetIrp = (PBUS_RESET_IRP)deviceExtension->FlinkZ;

while (BusResetIrp) {

1f (BusResetIrp->Irp == Irp) { Is 'I'his CorreC'I'?

temp->Flink2 = BusResetIrp->FlinkZ;
free(BusResetIrp);

1f (BusResetIrp->Flink2 == (PBUS_RESET_IRP)deviceExtension) { O r a-'- leas-l- ° does

lse {

tS:emp = BusResetIrp; i'l- have baSiC

BusResetIrp = (PBUS_RESET_IRP)BusResetIrp->Flink2;
}

" properties like it

KeReleaseSpinLock(&deviceExtension->ResetSpinLock, Irql);
. _ /
Irp->ToStatus. Status < STATUS_CANCELLED: wont crash or leak
memory?

IoCompleteRequest(Irp, IO_NO_INCREMENT);
} // t1394Diag_CancellIrp

Today's plan

@ Motivation for Separation Logic
@ Assertion language
@ Mathematical model

® Data structures

Simple Imperative Language

@ Safe commands:
o
@ Heap accessing commands:
o
where E is an expression e.g., X, Y, nil, efc.
@ Command:

D

where B boolean guard E=E, E!=E, efc.

Example Program:
List Reversal

Example Program:
List Reversal

Example Program:
List Reversal

Example Program:
List Reversal

Some properties
we would like to prove:

Does the program preserve
acyclicity/cyclicity?

Does it core-dump?

Does It create garbage?

Example Program

We are interested in pointer manipulating programs

g | Stack
= X = new(3,3); AL

v = new(4,4); ¢) Heap
[x+1] = v;
[v+1] = x;
y = X+1;

dispose X;

y = lyl;

Example Program

We are interested in pointer manipulating programs

X = new(3,3); Sl > g
=D v = new(4,4); il ’ _ Heap

[x+1] = v; /

[v+1] = x; 3 ‘ 3

y = X+1;

dispose X; ; 3

y = lyl;

Example Program

We are interested in pointer manipulating programs

X = new(3,3); X o

v = new(4,4); ik) Heap
=D [Xx+1] = V; /

ly+1] = x; JE 4| 4

y = X+1;

dispose X; ; 3

y = lyl;

Example Program

We are interested in pointer manipulating programs

X = new(3,3); X ke
v = new(4,4); ik) Heap
[x+1] = v; /

> [y+1] = x; 5] 4%
y = X+1;
dispose X; ; 3

y = lyl;

Example Program

We are interested in pointer manipulating programs

X = new(3,3); X -

v = new(4,4); ik) Heap

[x+1] = v; /

[y+1] = x; 3‘ »4“ :
= Y = X+1; 1

dispose X; ; 3

y = lyl;

Example Program

We are interested in pointer manipulating programs

X = new(3,3); X -
v = new(4,4); ik) Heap
[x+1] = v; /
[y+1] = x; 3‘ »4“ :
V = X+1; t
== dispose X; ;]

y = lyl;

Example Program

We are interested in pointer manipulating programs

X = new(3,3); X -

v = new(4,4); il ’ _ Heap
[x+1] = v; /

[v+1] = x; > 4 “ .

V = X+1; t

dispose X; ; 3

= Y = [y];

Example Program

We are interested in pointer manipulating programs

X = new(3,3); X o

v = new(4,4); ik) Heap
[x+1] = v; /

y+1] = x; >4 “ g

V = X+1; 1

dispose X; ; 3
y = Lyl

Why Separation Logic?

Consider this code:

YERY
[z] & &

Guarantee([y] != [z])

We need to know that things are different.

Why Separation Logic?

Consider this code:

Assume(y != z) Add assertion?

YERY
[z] & &

Guarantee([y] != [z])

We need to know that things are different.

Why Separation Logic?

Consider this code:

Assume(y != z) Add assertion?

YERY
[z] & &

Guarantee([y] != [z])

We need to know that things are different.

Why Separation Logic?

Consider this code:

Assume(y != z) Add assertion?

YERY
[z] & &

Guarantee([y] != [z])

We need to know that things are different.

Why Separation Logic?

Consider this code:

Assume(y != z) Add assertion?

YERY
[z] & &

Guarantee([y] != [z])

We need to know that things are different.

Framing

We want a general concept of things not being affected.
{P} C {Q}
{7 && P} C{Q && " }

What are the conditions on C and R?

Hard to define if reasoning about a heap and aliasing

Framing

We want a general concept of things not being affected.
{P} C {Q}
{7 && P} C{Q && " }

What are the conditions on C and R?

Hard to define if reasoning about a heap and aliasing

This is where separation logic comes in

P} C {Q}
iR*P}1cCciQ ;

Introduces new connective © used to separate state.

Storage Model

def

Vars = {x,y,2,...}

Locs & {1,2,3,4,...} Vals O Locs

def
Heaps = Locs —y, Vals

def
Stacks = Vars — Vals
def

States = Stacks x Heaps

Storage Model

def

Vars = {x,y,2,...}

Locs & {1,2,3,4,...} Vals O Locs

def
Heaps = Locs —y, Vals

def
Stacks = Vars — Vals
def

States = Stacks x Heaps

Storage Model

def

Vars = {x,y,2,...}

Locs & {1,2,3,4,...} Vals O Locs

def
Heaps = Locs —y, Vals

def
Stacks = Vars — Vals
def

States = Stacks x Heaps

Storage Model

def

Vars = {x,y,2,...}
Locs <

{1,2,3,4,...} Vals O Locs

def
Heaps = Locs —y, Vals

Stacks =

States

Vars — Vals

— Stacks x Heaps

Storage Model

def

Vars = {x,y,2,...}

Locs & {1,2,3,4,...} Vals O Locs

def
Heaps = Locs —y, Vals

def
Stacks = Vars — Vals
def

States = Stacks x Heaps

Storage Model

def

Vars = {x,y,2,...}

Locs & {1,2,3,4,...} Vals O Locs

def
Heaps = Locs —y, Vals

def

Stacks = Vars — Vals

def

States = Stacks x Heaps

Storage Model

def

Vars = {x,y,2,...}

Locs & {1,2,3,4,...} Vals O Locs

def
Heaps = Locs —y, Vals

def
Stacks = Vars — Vals
def

States = Stacks x Heaps

Storage Model

def

Vars = {x,y,2,...}

Locs & {1,2,3,4,...} Vals O Locs

def
Heaps = Locs —y, Vals

def
Stacks = Vars — Vals
def

States = Stacks x Heaps

Storage Model

Vars £ {z,y,z2,...}
Locs & {1,2,3,4,...} Vals O Locs

Heaps “ Locs —an Vals
Stacks = Vars — Vals
States = Stacks x Heaps

Storage Model

Vars £ {z,y,z2,...}
Locs & {1,2,3,4,...} Vals O Locs

Heaps “ Locs —an Vals
Stacks = Vars — Vals
States = Stacks x Heaps

Mathematical Structure of Heap

def
Heaps = Locs —y, Vals

hi#hs <L dom(hy) Ndom(hs) = 0

hy # B def { hi U hs it hi#ho

undefined otherwise

Mathematical Structure of Heap

def
Heaps = Locs —y, Vals

hi#hs <L dom(hy) Ndom(hs) = 0

hiUhy if hyi#hs

Ef
fry * ha - { undefined otherwise

1) * has a unit
2) * is associative and commutative

3) (Heap,*{}) is a partial commutative monoid

Assertions

r|n| E+F | —FE | ... Heap-independent Exprs
E=F | E>F | E—~F Atomic Predicates

emp | Px*x(Q Separating Connectives
true | PAQ | =P | Vx. P Classical Logic

Informal Meaning

Assertions

= x| n| E+F | —-F | . Heap-independent Exprs
E=F | E>F | E|—>F Atomic Predicates

\ m\ P xQ Separating Connectives
| true | PAQ | =P | Vx. P Classical Logic

Informal Meaning

Assertions

= x| n| E+F | —-F | . Heap-independent Exprs
E=F | E>F | E|—>F Atomic Predicates

\ m\ P xQ Separating Connectives
| true | PAQ | =P | Vx. P Classical Logic

Informal Meaning Heap

Assertions

r|n| E+F | —FE | ... Heap-independent Exprs
E=F | E>F | E—~F Atomic Predicates

emp | Px*x(Q Separating Connectives
true | PAQ | =P | Vx. P Classical Logic

Informal Meaning Heap

Assertions

r|n| E+F | —FE | ... Heap-independent Exprs
E=F | E>F | Atomic Predicates

emp | Px*x(Q Separating Connectives
true | PAQ | =P | Vx. P Classical Logic

Informal Meaning Heap

Assertions

r|n| E+F | —FE | ... Heap-independent Exprs
E=F | E>F | Atomic Predicates

emp | Px*x(Q Separating Connectives
true | PAQ | =P | Vx. P Classical Logic

Informal Meaning Heap

Assertions

r|n| E+F | —FE | ... Heap-independent Exprs
E=F | E>F | E—~F Atomic Predicates

emp | Px*x(Q Separating Connectives
true | PAQ | =P | Vx. P Classical Logic

Informal Meaning Heap

Assertions

r|n| E+F | —FE | ... Heap-independent Exprs

E=F | E>F | E—F Atomic Predicates
emp \ Separating Connectives

true | PAQ | =P | Vx. P Classical Logic

Informal Meaning Heap

Assertions

r|n| E+F | —FE | ... Heap-independent Exprs

E=F | E>F | E—F Atomic Predicates
emp \ Separating Connectives

true | PAQ | =P | Vx. P Classical Logic

Examples

emp

Stack X Y

Heap

Examples

emp*x|->y

Stack X Y

Heap

Examples

emp*x|->y

Stack X Y

Heap

Examples

X|->y

Stack X Y

Heap

Examples

X|->y * y|->z

Stack X Y

Heap

Examples

Stack

Heap

X|->y * y|->z

LS 2

Examples

X|->y * y|l->z* z|->x

Stack X Y Z

Heap

Examples

X|->y * y|l->z* z|->x

Stack X Y Z

Heap

Semantics of Assertions

@ Expressions mean maps from stacks to integers.

|E] : Stacks — Vals

@ Semantics of assertions given by satisfaction relation
between states and assertions.

(s,h) = P

Semantics of Assertions

@ Expressions mean maps from stacks to integers.

|E] : Stacks — Vals

@ Semantics of assertions given by satisfaction relation
between states and assertions.

Semantics of Assertions

@ Expressions mean maps from stacks to integers.

|E] : Stacks — Vals

@ Semantics of assertions given by satisfaction relation
between states and assertions.

Semantics of Assertions

CID

|E]s, [F]s € Integers and [E]s > [F|s

dom(h) = {[E]s} and h([E]s) = [F]s

h=1 (ie., dom(h) =0)

Hh()hl. ho > hl — h, (S, h()) ’: P and (S, hl) |: Q
always

(s,h) = P and (s,h) =@

not ((s,h) = P)
Vv € Vals. (s|lz—v], h) = P)

w

m
&
[
=

» O
S S R s s

Cla

Co

o
I
J
i

N e e N— N—

(s,
(
(s,
(s,
(s,
(s,
(
(s,

Cla

Semantics of Assertions

Cla

|E]s, [F]s € Integers and [E]s > [F|s

dom(h) = {|E|s} and h(|E|s) = |F|s

h=1 (ie., dom(h) =0)

thhl. ho * hl — h, (S, h()) ’: P and (S, hl) |: Q
always

(s;h) =P and (s,h) =Q

not ((s,h) = P)
Vv € Vals. (s|lz—v], h) = P)

Cla

» O

Co

o
I
J
i

(s,h) =
(s,h) =
(s,h) =
(s,h) =
(s,h) =
(s,h) =
(s,7)
(s,h) =

Cla

Semantics of Assertions

[Els, [Fs € Integers and [Els > [Fs

dom(h) = {[E]s} and h([E]s) = [F]s

h=1 (ie., dom(h) =0)

thhl. ho > hl — h, (S, h()) ’: P and (S, hl) |: Q
always

(s,h) = P and (s,h) =@

not ((s,h) = P)
Vv € Vals. (s|lz—v], h) = P)

CID

D‘?‘D‘D‘ o S O S

W

m
&
L
=

» O

Co

o
I
J
i

S— N N SN—" " SN—— ~—

(s,
(
(s,
(s,
(s,
(s,
(
(s,

Cla

Semantics of Assertions

CID

|E]s, [F]s € Integers and [E]s > [F|s
dom(h) = {[F]s} and h([|F]s) = [F]s

h=1] (ie., dom(h) = 0)
dhohyi. hg * h1 = fL, (S, fLQ) |: F and (S, fll) IZ (oj

w

m
&
[
=

CIDCID

always
(s;h) =P and (s,h) =@

not ((s,h) = P)
Vv € Vals. (s|lz—v], h) = P)

Co

o
I
J
i

(s,h) =
(s, h)
(s,h) =
(s,h) =
(s,h) =
(s,h) =
(s,7)
(s,h) =

Cla

Semantics of Assertions

CID

D‘?‘D‘D‘ oS S

|E]s, [F]s € Integers and [E]s > [F|s
dom() =A{[F]s} and h([F]s) = [F]s

=[] (i.e.. dom(h) =0)
Hhohl h()*hl—h (h()) ’:P and (S,hl) ‘:Q

always
(s;h) =P and (s,h) =@

not ((s,h) = P)
Vv € Vals. (s|lz—v], h) = P)

w

m
&
[
=

CIDCID

Co

o
I
J
i

S— N N SN—" SN—"

(s,
(
(s.
(s.
(s,
(s,
(
(s,

Cla

Semantics of Assertions

CID

|E]s, [F]s € Integers and [E]s > [F|s

dom(h) = {[E]s} and h([E]s) = [F]s

h=1 (ie., dom(h) =0)

thhl. ho > hl — h, (S, h()) ’: P and (S, hl) |: Q
always

(s,h) = P and (s,h) =@Q

not ((s,h) = P)
Vv € Vals. (s|lz—v], h) = P)

V)

ST > > >
i
&
L
T

CIJ

AR

o
I
J
i

(s,
(
(s,
(s,
(s,
(s,
(
(s,

N’ e e N— N—

Cla

Semantics of Assertions

|E]s, [F]s € Integers and [E]s > [F|s
dom(h) = {[F]s} and h([|F]s) = [F]s

h=1[(ie., dom(h) = 0)
thhl. ho X hl — h, (S, h()) ’: P and (S, hl) |: Q

always

(s,h) F P and (s,h) =
not ((s,h) E P)

Vo € Vals. (slz—u], h) = P)

Semantics of Assertions

|E]s, [F]s € Integers and [E]s > [F|s
dom(h) = {[F]s} and h([|F]s) = [F]s

h=1[(ie., dom(h) = 0)
thhl. ho X hl — h, (S, h()) ’: P and (S, hl) |: Q

always

(_Q/ h) !: P and (.Q/ h) !: Q
not ((s,h) = P)

Vv € Vals. (s|lz—v], h) = P)

Semantics of Assertions

|E]s, [F]s € Integers and [E]s > [F|s
dom(h) = {[F]s} and h([|F]s) = [F]s

h=1[(ie., dom(h) = 0)
thhl. ho X hl — h, (S, h()) ’: P and (S, hl) |: Q

always

(s;h) =P and (s,h) =@
not ((s.h) = P)

Vv € Vals. (s|lx—uv], h) = P)

»w O

Vi

» » W

(
(
(
€
(
(
(
(

S S ISR S LRSS

Vi

Abbreviations

The address E is active:

where x’ not free in E

E points to F somewhere in the heap:

E points to a record of several fields:

Example

Stack

Heap

Stack

Heap X y

Stack

HGGP 3 “ - > Y

Stack

HGGP 3 “ - > Y

Stack

Heap

T 3,y

Yy — 3,7

T3, Y*xy— 3,7

Stack

Heap

Stack

Heap

T 3,y

Yy — 3,7

T3, Y*xy— 3,7

rT— 3, YNy — 3,

Stack

Heap

T =3,y -
— 3, T
/ Stack
T3, Y*xy— 3,7 i
T 3, YNy 3, Heap 3“

T3, Y -
Y192 Stack
x— 3, Yxyr— 3,2 >
rT— 3, YNy+— 3,a I-Ieap 3“
rT— 3, YNy — 3, N s

Exercise: whats the last formula asserting?

An Inconsistency

@ Whats wrong with the following formula?

o 10|->3 * 10|->3

An Inconsistency

@ Whats wrong with the following formula?

o 10|->3 * 10|->3

Try to be in two places
Te 10 at the same time

Exercise

what is h such that s,hl= p h1={(s(x),1)}

h 2={(S(Y),2)}
with s(x)!=s(y)

Exercise

what is h such that s,hl= p h1={(s(x),1)}

h2={(s(y),2)}
x|->1 with s(x)'=s(y)

Exercise

what is h such that s,hl= p h1={(s(x),1)}

h2={(s(y),2)}
x|->1 with s(x)'=s(y)

Exercise

what is h such that s,hl= p h1={(s(x),1)}
h2={(s(y),2)}
x|->1 with s(x)'=s(y)

y|->2

Exercise

what is h such that s,hl= p h1={(s(x),1)}
h2={(s(y),2)}
x|->1 with s(x)'=s(y)

y|->2

Exercise

what is h such that s,hl= p h1={(s(x),1)}
h2={(s(y),2)}
x|->1 with s(x)'=s(y)
y|->2

X|->1 * y|->2

Exercise

what is h such that s,hl= p h1={(s(x),1)}
h2={(s(y),2)}
x|->1 with s(x)'=s(y)
y|->2

X|->1 * y|->2

Exercise

what is h such that s,hl= p h1={(s(x),1)}
h2={(s(y),2)}
x|->1 with s(x)'=s(y)
y|->2
X|->1 * y|->2

x|->1 * true

Exercise

what is h such that s,hl= p h1={(s(x),1)}
h2={(s(y),2)}
x|->1 with s(x)'=s(y)
y|->2
X|->1 * y|->2

x|->1 * true

Exercise

what is h such that s,hl= p h1={(s(x),1)}
h2={(s(y),2)}
x|->1 with s(x)'=s(y)
y|->2
X|->1 * y|->2

x|->1 * true

x|->1 * y|[->2 * (x]->1 \/ yl|->2)

Exercise

what is h such that s,hl= p h1={(s(x),1)}
h2={(s(y),2)}
x|->1 with s(x)'=s(y)
y|->2
X|->1 * y|->2

x|->1 * true

x|->1 * y|[->2 * (x]->1 \/ yl|->2)

Validity
@ P is valid if, for all s,h, s,h|=P
@ Examples:
@ E|->3 => E>O0
@ E|l-> - * E|l-> -
@El->-*F|->- =>E!=F
@E|->3/\F|-> 3= E=F

& E|->3 * F |->3 => E|->3 /\ F |->3

Validity
@ P is valid if, for all s,h, s,h|=P
@ Examples:
@ E|->3 => E>O0
@ E|l-> - * E|l-> -
@El->-*F|->- =>E!=F
@E|->3/\F|-> 3= E=F

& E|->3 * F |->3 => E|->3 /\ F |->3

Validity
@ P is valid if, for all s,h, s,h|=P
@ Examples:
@ E|->3 => E>O0
@ E|l-> - * E|l-> -
@El->-*F|->- =>E!=F
@E|->3/\F|-> 3= E=F

& E|->3 * F |->3 => E|->3 /\ F |->3

Validity
@ P is valid if, for all s,h, s,h|=P
@ Examples:
@ E|->3 => E>O0
@ E|l-> - * E|l-> -
@El->-*F|->- =>E!=F
@E|->3/\F|-> 3= E=F

& E|->3 * F |->3 => E|->3 /\ F |->3

Validity
@ P is valid if, for all s,h, s,h|=P
@ Examples:
@ E|->3 => E>O0
@ E|l-> - * E|l-> -
@El->-*F|->- =>E!=F
@E|->3/\F|-> 3= E=F

& E|->3 * F |->3 => E|->3 /\ F |->3

Validity
@ P is valid if, for all s,h, s,h|=P
@ Examples:
@ E|->3 => E>O0
@ E|l-> - * E|l-> -
@El->-*F|->- =>E!=F
@E|->3/\F|-> 3= E=F

& E|->3 * F |->3 => E|->3 /\ F |->3

Homework

@ Determine/Draw the stack and heap
corresponding to the following formulae

@ x|->4,5
o X|->4,4 * y|->4,4
o x|->4,4 /\ yl->4,4
@ Say if the following are valid or not
@ x|->3 * y|->7 ==> x|->3 * true

o true * x|->3 ==> x|->3

Some Laws and
inference rules

P1 * P2 S s

(p1*p2) *xp3 <= p1*(p2*p3)

D * emp <~ P

(P1Vp2)xqg <= (p1*q)V(p2*g)

(z.p1) * po <= dz.(p1 *p2) when x not in p
(Vx.p1) * po < Vz.(p1 *p2) when x not in ps

Pr = P2 @1 = 92 Monotonicity
D Quimeema V2 * {2

Some Laws and
inference rules

...but
(p1 Ap2) *q = (p1*q) A (p2 *q)

Exercise: prove that the other
direction does not hold

(Vz.p1) * pa” i § (D] £0o) "wWhen £°not in ps

br = P2 @1 = 92 Monotonicity
D Quimeema V2 * {2

Substructural logic

@ Separation logic is a substructural logic:

No Contraction

No Weakening

Examples:

Lists

A non circular list can be defined with
the following inductive predicate:

= emp /\ i=nil
= exists j. il->s,j * list S j

List segment

Possibly empty list segment

= (emp /\ x=y) OR
exists j. x|->j * Iseq(j,y)

Non-empty non-circular list segment

= XI=NT\
((x|->y) OR exists j. x|->j * lseg(j,y))

Trees

A tree can be defined with this inductive
definition:

tree [] i = emp /\ i=nil

tree (t1,a,12) i = exists j,k.
| i|l->j,a,k * (tree t1 j) * (tree t2 k)
|

K

S A

References

@ J.C. Reynolds.
LICS 2002

® S. Ishtiag and PW. O’Hearn.
POPL 200L.

