Program Verification
Using Separation Logic

Queen Mary University of London

Lecture 1



Goal of the course

Study Separation Logic having
automatic verification in mind

Learn how some notions of
mathematical logic can be very helpful
In reasoning about real world programs



vold t1394Diag_CancelIrp(PDEVICE_OBJECT DeviceObject, PIRP Irp)

{
KIRQL Irql, Cance

BUS RESETIRP - #BuskesetIrp, *teny; A piece of a windows

PDEVICE_EXTENSION  device

deviceExtension = DeviceObject->DeviceExtension; d ev i Ce d r i V e r
[ J

KeAcquireSpinLock(&deviceExtension->ResetSpinLock, &Irql);

temp = (PBUS_RESET_IRP)deviceExtension;
BusResetIrp = (PBUS_RESET_IRP)deviceExtension->FlinkZ;

while (BusResetIrp) {

1f (BusResetIrp->Irp == Irp) { Is 'I'his CorreC'I'?

temp->Flink2 = BusResetIrp->FlinkZ;
free(BusResetIrp);

1f (BusResetIrp->Flink2 == (PBUS_RESET_IRP)deviceExtension) { O r a-'- leas-l- ° does

lse {

tS:emp = BusResetIrp; i'l- have baSiC

BusResetIrp = (PBUS_RESET_IRP)BusResetIrp->Flink2;
}

" properties like it

KeReleaseSpinLock(&deviceExtension->ResetSpinLock, Irql);
. _ /
Irp->ToStatus. Status < STATUS_CANCELLED: wont crash or leak
memory?

IoCompleteRequest(Irp, IO_NO_INCREMENT);
} // t1394Diag_CancellIrp




Today's plan

@ Motivation for Separation Logic
@ Assertion language
@ Mathematical model

® Data structures






Simple Imperative Language

@ Safe commands:
o
@ Heap accessing commands:
o
where E is an expression e.g., X, Y, nil, efc.
@ Command:

D

where B boolean guard E=E, E!=E, efc.
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Example Program:
List Reversal

Some properties
we would like to prove:

Does the program preserve
acyclicity/cyclicity?

Does it core-dump?

Does It create garbage?



Example Program

We are interested in pointer manipulating programs

g | Stack
= X = new(3,3); AL

v = new(4,4); ¢ ) Heap
[x+1] = v;
[v+1] = x;
y = X+1;

dispose X;

y = lyl;
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We are interested in pointer manipulating programs
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Example Program

We are interested in pointer manipulating programs

X = new(3,3); X -

v = new(4,4); il ’ _ Heap
[x+1] = v; /

[v+1] = x; > 4 “ .

V = X+1; t

dispose X; ; 3

= Y = [y];



Example Program

We are interested in pointer manipulating programs

X = new(3,3); X o

v = new(4,4); ik ) Heap
[x+1] = v; /

y+1] = x; >4 “ g

V = X+1; 1

dispose X; ; 3
y = Lyl



Why Separation Logic?

Consider this code:

YERY
[z] & &

Guarantee([y] != [z])

We need to know that things are different.
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Framing

We want a general concept of things not being affected.
{P} C {Q}
{7 && P} C{Q && " }

What are the conditions on C and R?

Hard to define if reasoning about a heap and aliasing




Framing

We want a general concept of things not being affected.
{P} C {Q}
{7 && P} C{Q && " }

What are the conditions on C and R?

Hard to define if reasoning about a heap and aliasing

This is where separation logic comes in

P} C {Q}
iR*P}1cCciQ ;

Introduces new connective © used to separate state.







Storage Model

def

Vars = {x,y,2,...}

Locs & {1,2,3,4,...} Vals O Locs

def
Heaps = Locs —y, Vals

def
Stacks = Vars — Vals
def

States = Stacks x Heaps
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Storage Model

Vars £ {z,y,z2,...}
Locs & {1,2,3,4,...} Vals O Locs

Heaps “ Locs —an Vals
Stacks = Vars — Vals
States = Stacks x Heaps




Mathematical Structure of Heap

def
Heaps = Locs —y, Vals

hi#hs <L dom(hy) Ndom(hs) = 0

hy # B def { hi U hs it hi#ho

undefined otherwise




Mathematical Structure of Heap

def
Heaps = Locs —y, Vals

hi#hs <L dom(hy) Ndom(hs) = 0

hiUhy  if hyi#hs

Ef
fry * ha - { undefined otherwise

1) * has a unit
2) * is associative and commutative

3) (Heap,*{}) is a partial commutative monoid
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r|n| E+F | —FE | ... Heap-independent Exprs
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Assertions

r|n| E+F | —FE | ... Heap-independent Exprs

E=F | E>F | E—F Atomic Predicates
emp \ Separating Connectives

true | PAQ | =P | Vx. P Classical Logic
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Examples

Stack

Heap

X|->y * y|->z

LS 2




Examples

X|->y * y|l->z* z|->x

Stack X Y Z

Heap




Examples

X|->y * y|l->z* z|->x

Stack X Y Z

Heap




Semantics of Assertions

@ Expressions mean maps from stacks to integers.

|E] : Stacks — Vals

@ Semantics of assertions given by satisfaction relation
between states and assertions.

(s,h) = P
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Semantics of Assertions
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Semantics of Assertions

|E]s, [F]s € Integers and [E]s > [F|s
dom(h) = {[F]s} and h([|F]s) = [F]s

h=1[ (ie., dom(h) = 0)
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Semantics of Assertions
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Abbreviations

The address E is active:

where x’ not free in E

E points to F somewhere in the heap:

E points to a record of several fields:



Example

Stack

Heap




Stack

Heap X y




Stack

HGGP 3 “ - > Y




Stack

HGGP 3 “ - > Y




Stack

Heap




T 3,y

Yy — 3,7

T3, Y*xy— 3,7

Stack

Heap
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T 3,y

Yy — 3,7

T3, Y*xy— 3,7

rT— 3, YNy — 3,

Stack

Heap




T =3,y -
— 3, T
/ Stack
T3, Y*xy— 3,7 i
T 3, YNy 3, Heap 3“




T3, Y -
Y192 Stack
x— 3, Yxyr— 3,2 >
rT— 3, YNy+— 3,a I-Ieap 3“
rT— 3, YNy — 3, N s

Exercise: whats the last formula asserting?



An Inconsistency

@ Whats wrong with the following formula?

o 10|->3 * 10|->3



An Inconsistency

@ Whats wrong with the following formula?

o 10|->3 * 10|->3

Try to be in two places
Te 10 at the same time
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Exercise

what is h such that s,hl= p h1={(s(x),1)}
h2={(s(y),2)}
x|->1 with s(x)'=s(y)
y|->2
X|->1 * y|->2

x|->1 * true

x|->1 * y|[->2 * (x]->1 \/ yl|->2)



Exercise

what is h such that s,hl= p h1={(s(x),1)}
h2={(s(y),2)}
x|->1 with s(x)'=s(y)
y|->2
X|->1 * y|->2

x|->1 * true

x|->1 * y|[->2 * (x]->1 \/ yl|->2)
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@ P is valid if, for all s,h, s,h|=P
@ Examples:
@ E|->3 => E>O0
@ E|l-> - * E|l-> -
@El->-*F|->- =>E!=F
@E|->3/\F|-> 3= E=F
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Homework

@ Determine/Draw the stack and heap
corresponding to the following formulae

@ x|->4,5
o X|->4,4 * y|->4,4
o x|->4,4 /\ yl->4,4
@ Say if the following are valid or not
@ x|->3 * y|->7 ==> x|->3 * true

o true * x|->3 ==> x|->3



Some Laws and
inference rules

P1 * P2 S s

(p1*p2) *xp3 <=  p1*(p2*p3)

D * emp <~ P

(P1Vp2)xqg <= (p1*q)V(p2*g)

(z.p1) * po <= dz.(p1 *p2) when x not in p
(Vx.p1) * po < Vz.(p1 *p2) when x not in ps

Pr = P2 @1 = 92 Monotonicity
D Quimeema V2 * {2




Some Laws and
inference rules

...but
(p1 Ap2) *q = (p1*q) A (p2 *q)

Exercise: prove that the other
direction does not hold

(Vz.p1) * pa” i § (D] £0o) "wWhen £°not in ps

br = P2 @1 = 92 Monotonicity
D Quimeema V2 * {2




Substructural logic

@ Separation logic is a substructural logic:

No Contraction

No Weakening

Examples:



Lists

A non circular list can be defined with
the following inductive predicate:

= emp /\ i=nil
= exists j. il->s,j * list S j




List segment

Possibly empty list segment

= (emp /\ x=y) OR
exists j. x|->j * Iseq(j,y)

Non-empty non-circular list segment

= XI=NT\
((x|->y) OR exists j. x|->j * lseg(j,y))




Trees

A tree can be defined with this inductive
definition:

tree [] i = emp /\ i=nil

tree (t1,a,12) i = exists j,k.
| i|l->j,a,k * (tree t1 j) * (tree t2 k)
|

K

S A
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